המרואיין: תומר דניאל (CTO)
כמה אנשי פיתוח ? איך מחולקים ?
אנחנו סטארט אפ קטן וצומח, כרגע כל הפיתוח מונה 7 מהנדסים, מהם שניים עוסקים באלגוריתמים והשאר מפתחים מנוסים בתחומם – Back End, מובייל ו-Web. אנחנו עובדים במתודולוגית Agile בספרינטים מוכווני לקוח ומחשבה רבה על איכות.
מהם המוצרים בחברה ?
vHive מפתחת פתרון תוכנה המאפשר לתכנן ולהטיס משימות מרובות רחפנים כדי לבצע סקרי צילום אווירי לצרכים תעשיתיים לתשתיות כמו מבני תעשייה, מגדלי אנטנות, גשרים ועוד. תכנון המשימה נעשה ע”י המשתמש בצורה פשוטה בWEB ואח”כ ההטסה מתבצעת באמצעות אפליקציית מובייל שמתקשרת עם המערכת האלגוריתמית בענן בצד אחד ועם הרחפנים בצד השני. התמונות שנאספו ע”י הרחפנים מועלות לענן ומעובדות בתהליך פוטוגרמטרי המייצר מודלים תלת מימדיים, Orthophotos ועוד. עיבודים נוספים כוללים זיהוי אובייקטים בתמונה ויכולת מדידה דו ממדית ותלת ממדית במודלים שנוצרים.
אילו חלקים במוצר מצריכים אלגוריתמיקה ?
המוצר שלנו עתיר באלגוריתמיקה; אנחנו מפתחים אלגוריתמים גיאומטרים לתכנון והטסה של סקרי צילום אווירי מרובי רחפנים, תוך שימוש באלגוריתמי אופטימיזציה למציאת פתרון אופטימלי במהירות תחת מספר רב של אילוצים ממספר גדול של קונפיגורציות על בסיס constraint based programming וב mixed integer programming בו האתגר הוא התכנסות מהירה.
במקביל אנחנו מפתחים אלגוריתמים לעיבוד תמונות וזיהוי אובייקטים שצולמו לשם הבנה של מרחב המשימה בזמן הביצוע וכן לאנליזה של תוצרים פוטוגרמטרים שונים עבור הלקוחות תוך שימוש ב ML ו Computer Vision
מה עובד לכם טוב ? (דוגמאות לאלגוריתמים)
לדוגמא, לצורך יצירת מודל תלת מימדי מדויק נדרש לעגן את התמונות במרחב בדיוק גבוה. לשם כך מניחים בשטח אובייקטים הנקראים Ground Control Points שהמיקום שלהם ידוע ברמת דיוק גבוהה. בתהליך יצירת המודל התלת מימדי נדרש לסמן את האובייקטים בתמונות. בנינו אלגוריתם מבוסס DL, שמזהה את האובייקטים בתמונות (מבוסס על Faster R-CNN) ומאפשר לחסוך מהמשתמש שעות רבות של תיוג התמונות ולקבל מודל תלת מימדי איכותי.
מה מאתגר אתכם ?
בצד האלגוריתמי: בפתרון של בעיות Deep Learning במרחב התלת מימדי ולא רק בתמונות. למשל, מתוך מאות תמונות שמצלמות מגדל אנטנות או גשר, להוציא תובנות על עצמים במרחב.
כמו כן זיהוי בזמן אמיתי של נקודות עניין לסקירה ומתן קונטקסט משימתי לרחפנים.
בצד המימוש: Scaling של הפתרון ללקוחות שונים עם צרכים שונים, וצמיחת האופרציה הפנימית מסביב לניהול המידע המשמש ללמידה.
בעיות שפתרתם בדרך יצירתית ?
עבור בעיית זיהוי האובייקטים שתיארתי מקודם, היה צורך לזהות בתוך תמונה, שבה מופיעים מספר אובייקטים זהים, איזה אובייקט שייך לאיזה מיקום במרחב (כלומר להבדיל בין האובייקטים הזהים), כאשר קיימת שגיאה במדידת המיקום, והאובייקטים צפופים. שילבנו בפתרון אלגוריתמים מתחום ה Computer Vision אשר הצליחו בצורה יפה למפות את האובייקטים למיקום האמיתי שלהם ולזהות אותם.
ספר על משימת איסוף ה DB אצלכם ? (מי עושה ? מי בודק ? מי מתייג ? מי מנהל ?)
אנחנו סטארט-אפ קטן ולכן אנשי האלגוריתמים עושים גם את משימות איסוף המידע ותיוגו, עם עזרה חיצונית במקרה הצורך. אנחנו נעזרים גם במידע שהתקבל ממשימות רבות שבוצעו ע”י לקוחות. לעיתים הלקוחות מתייגים בתהליך העבודה שלהם נקודות עניין, מה שמאפשר לנו ליצור תהליך Guided Learning
מהם אתגרי העתיד ?
אנחנו מסתכלים עכשיו על הוספת יכולת Awareness לרחפנים באמצעות Vision Understanding בזמן אמת מהוידאו של הרחפן. דרישה נוספת מהלקוחות להפקת דוחות אוטומטיים מתוך המידע מתמונות הרחפן והמודל הפוטוגרמטרי התלת המימדי , ברמת דיוק ואמינות גבוהה.