מביא כאן טבלה של כמה נביאים מכמה ענקיות שמתעסקות באופן ישיר או עקיף בפיתוח רכבים אוטונומיים. לאחר השמטה של הפרטים, ראו את הנבואות של החזקים בשוק לגבי מתי נראה הרבה רכבים אוטונומיים על הכבישים:
Year | Company |
2020 | Nvidia |
2020 | Audi |
2020 | NuTonomy |
2019 | Delphi & MobilEye |
2021 | Ford |
2019 | Volkswagen |
2020 | GM |
2021 | BMW |
2020 | Toyota |
2021 | Tesla |
2025 | US Secretary of Transportation |
2030 | UBER |
2024 | Jaguar and Land-Rover |
2025 | Daimler |
2020 | Nissan |
בכדי לאמן רשת נוירונים לנהוג ברכב יש לאמן אותה עם מגוון סוגי נהיגה, מצבי נהיגה, מזגי אוויר שונים. כמויות המידע איתם מאמנים לנהיגה הינם בסדרי גודל של petabytes (ז”א אלפי טרבייטים terabytes).
השחקניות הגדולות במרוץ לרכב האוטונומי (Ford, GM, Waymo, Tesla) מחזיקות צי של מאות רכבים שמוסיפים למאגר המידע שלהם בקצב שיכול להגיע למיליון מיילים ליום שנועד לאמן ולשפר את האלגוריתם שלהם. כמובן שמאגר נתונים של נסיעות אמיתיות לא מספיק ומשקיעים הרבה גם בלבנות סימולציה של נתוני נהיגה (למשל פלטפורמת הקוד הפתוח לסימולציה של רכבים אוטונומיים Carla).
נתוני נסיעה לא אומר רק תמונות (וידאו) ממצלמות היקפיות אלא גם מחיישנים נוספים שבניהם רדאר ולידר.
ההיסטוריה המדעית מלאה ניסיונות לאוטומטיזציה של רכבים עוד מהמאה הקודמת, למשל ALVINN הינו פרויקט אמבולנס צבאי אוטונומי מבוסס רשת נוירונים בת שתי שכבות מאוניברסיטת Carnegie Mellon משנת 1989:
https://www.youtube.com/watch?v=ilP4aPDTBPE
במאמר הזה של אנבידיה מספרים על איך אימנו רשת לשלוט בהגה בהינתן הוידאו של מצלמה קידמית והGround Truth של איך נהג סובב את ההגה בכל רגע של הנסיעה. במאמר הם מוכיחים שעל אף שלא הכניסו לאלגוריתם כללים של על מה להסתכל בתמונה ואיך להזיז את ההגה כלל, האלגוריתם למד בעצמו (אחרי האימון) מה חשוב בתמונה כדי להחליט איך לסובב את ההגה. (ניתן לראות בתמונות שמה שמודגש בירוק אלו האזורים בתמונה שהרשת המאומנת מחשיבה כחשובים לקבלת ההחלטה שלה איך להסיט את ההגה)
ז”א הרשת מבינה מה חשוב בתמונה (שולי הכביש) ומה לא רלוונטי כרגע לצורך השליטה בהגה.
אגב, את טעויות הנהיגה: ה-“כמעט סטייה מהנתיב”, או ה-“כמעט תאונה” הוסיפו באופן סינטטי ע”י הסטת תמונת הנתיב, כי הרי על האלגוריתם גם ללמוד הרבה מאיך מתקנים הגה כשצריך, ולייצר נתונים כאלו אמיתיים זה טיפה מסוכן…
לאחר שאימנו את האלגוריתם עם רשת CNN=Convolutional Neural Network בת תשע שכבות, בחנו אותו על סימולציה שמציגה לאלגוריתם וידאו של אותה מצלמה קידמית שנבנה בצורה סינתטית על בסיס וידאו אמיתי (ז”א לקחו פריימים אמיתיים שצילמו והסיטו אותם כך שייראה שיש סטייה מהמסלול). בריצת הסימולציה אפשרו לנהג (אנושי) לתקן את ההיגוי כשצריך. כדי לבחון עד כמה האלגוריתם בשל לחיים האמיתיים הגדירו מדד לרמת האוטונומיות שמבוסס על מספר הפעמים שבו הייתה התערבות אנושית לנהיגה, וכשהאלגוריתם נהיה מספיק אוטונומי (מינימום התערבויות בסימולטור) יצאו לנסיעת מבחן אמיתית, ראו את התוצאה: